

# EPD Industrial sectional doors, sectional garage doors, roller shutters and roller grilles

# **Short Version**

Environmental Product Declaration Acc. to ISO 14025 and EN 15804

Industrial sectional doors, sectional garage doors, roller shutters and roller grilles (company EPD)

Teckentrup GmbH & Co. KG













Declaration code EPD-SRR-GB-5.0

January 2013





### Short version (Part 1 of 3)

ift Rosenheim GmbH Theodor-Gietl-Strasse 7-9 **Programme** 83026 Rosenheim operator Germany

**Experts GmbH** LCA analyst

Berliner Allee 58 64295Darmstadt Germany

Life Cycle Engineering



Holder of the declaration

Teckentrup GmbH & Co. KG Industriestraße 50 33415 Verl-Sürenheide Germany



| LCA results<br>per m² industrial sectional door                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Product stage | Construction process stage |    | Use stage |          |           |    |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|----|-----------|----------|-----------|----|--|
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 – A3       | A4                         | A5 | B1        | B2       | В3        | B4 |  |
| Primary energy – non-renewable (PE <sub>n renw</sub> ) in MJ                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 807.00        | 6.19                       | -  | -         | 0.02     | 86.26     | -  |  |
| Primary energy – renewable<br>(PE <sub>renw</sub> ) in MJ                    | O B Filmman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.90          | 0.25                       | -  | -         | 5.53E-04 | 2.11      | -  |  |
| Global warming potential<br>(GWP 100) in kg CO₂ equiv.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.20         | 0.48                       | -  | -         | 2.24E-03 | 6.09      | -  |  |
| Ozone depletion potential (ODP) in kg R11 equiv.                             | O the Programme of the | 1.01E-07      | 2.40E-11                   | -  | -         | 4.00E-12 | 8.93E-09  | -  |  |
| Acidification potential (AP) in kg SO2 equiv.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15          | 1.94E-03                   | -  | -         | 2.76E-06 | 0.02      | -  |  |
| Eutrophication potential (EP) in kg PO <sub>4</sub> <sup>3-</sup> equiv.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01          | 4.68E-04                   | -  | -         | 1.04E-06 | 1.79 E-03 | -  |  |
| Photochemical ozone creation potential (POCP) in kg C₂H₄ equiv.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02          | 6.91E-04                   | -  | -         | 5.52E-07 | 3.24E-03  | -  |  |
| Abiotic depletion potential (elements) (ADP <sub>el.</sub> ) in kg Sb equiv. | Sical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.88E-05      | 2.05E-08                   | -  | -         | 0.02     | 84.43     | -  |  |
| Abiotic depletion potential (fossil)<br>(ADP <sub>fos</sub> ) in MJ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 773.00        | 6.16                       | -  | -         | 5.69E-10 | 1.49E-06  | -  |  |
| Water consumption in m <sup>3</sup>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.80         | 0.02                       | -  | -         | 5.70E-03 | 1.64      | -  |  |

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

Patrick Wortner Prof. Ulrich Sieberath Director of Institute Verifier



### Short version (Part 1 of 3)

| Declaration code                | EPD-SRR-GB-5.0                                                                                                                                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Designation of declared product | Industrial sectional doors, sectional garage doors, roller shutters and roller grilles made of hot dip galvanized, double-skinned steel sections or aluminium with optional PU insulation panels for a high level of thermal insulation including optional glazing. |
| Scope                           | Teckentrup industrial sectional doors, sectional garage doors, roller shutters and roller grilles for external (and internal) use as a shutter for building openings and vehicle entrances in industrial, commercial and residential applications.                  |

| Use stage |    |    | End-of-l | Recycling potential |          |          |           |
|-----------|----|----|----------|---------------------|----------|----------|-----------|
| B5        | В6 | В7 | C1       | C2                  | C3       | C4       | D         |
| -         | -  | -  | -        | 0.74                | 10.60    | 0.48     | -313.10   |
| -         | -  | -  | -        | 0.03                | 1.80     | 0.02     | -2.70     |
| -         | -  | -  | -        | 5.33E-02            | 0.75     | 0.04     | -19.52    |
| -         | -  | -  | -        | 2.86E-12            | 3.71E-09 | 1.05E-10 | -3.91E-09 |
| -         | -  | -  | -        | 2.31E-04            | 1.25E-03 | 1.07E-04 | -0.09     |
| -         | -  | -  | -        | 5.57E-05            | 1.20E-04 | 4.28E-04 | -7.05E-03 |
| -         | -  | -  | -        | 8.22E-05            | 9.20E-05 | 1.77E-05 | -0.01     |
| -         | -  | -  | -        | 0.73                | 7.55     | 0.46     | -317.00   |
| -         | -  | -  | -        | 2.44E-09            | 6.18E-08 | 5.53E-09 | -1.12E-07 |
| -         | -  | -  | -        | 2.73E-03            | 1.83     | 0.02     | -0.20     |

#### Basis

- EN ISO 14025:2006
- EN 15804:2012

Guidance on preparing Type III Environmental Product Declarations.

This Declaration is based on the PCR document "Pedestrian doorsets and industrial, commercial and garage doors and gates PCR-TT-1.0: 2011

#### Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue.

The declaration holder assumes full liability for the underlying data, certificates and verifications.

Date created: 01 January 2013

Next revision: 01 January 2018

#### LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both the data collected at the production sites of TECKENTRUP GmbH & Co. KG as well as generic data from the "GaBi 5" database. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc. ).



The LCA was prepared by Life Cycle Engineering Experts GmbH.

#### Notes on publication

"Conditions and Guidance on the Use of **ift** Test Documents" apply.



Short version (Part 2 of 3)

Programme operator ift Rosenheim GmbH
Theodor-Gietl-Strasse 7-9
83026 Rosenheim
Germany

ift ROSENHEIM

LCA analyst

Life Cycle Engineering Experts GmbH Berliner Allee 58 64295Darmstadt Germany



Holder of the declaration

Teckentrup GmbH & Co. KG Industriestraße 50 33415 Verl-Sürenheide Germany



| LCA results<br>per m² sectional garage door                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Product<br>stage | Construction process stage |    | Use stage |          |          |    |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|----|-----------|----------|----------|----|--|
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 – A3          | A4                         | A5 | B1        | B2       | В3       | B4 |  |
| Primary energy – non-renewable<br>(PE <sub>n renw</sub> ) in MJ                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1110.00          | 7.89                       | -  | -         | 0.02     | 8.78     | -  |  |
| Primary energy – renewable (PE <sub>renw</sub> ) in MJ                                   | No se p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91.70            | 0.31                       | -  | -         | 5.53E-04 | 0.29     | -  |  |
| Global warming potential<br>(GWP 100) in kg CO₂ equiv.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64.30            | 0.57                       | -  | -         | 2.24E-03 | 0.35     | -  |  |
| Ozone depletion potential (ODP) in kg R11 equiv.                                         | Chi Photon and Chi Ph | 3.46E-07         | 3.07E-11                   | -  | -         | 4.00E-12 | 6.77E-09 | -  |  |
| Acidification potential<br>(AP) in kg SO₂ equiv.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.21             | 2.48E-03                   | -  | -         | 2.76E-06 | 6.29E-04 | -  |  |
| Eutrophication potential (EP) in kg PO <sub>4</sub> <sup>3-</sup> equiv.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02             | 5.97E-04                   | -  | -         | 1.04E-06 | 7.57E-05 | -  |  |
| Photochemical ozone creation potential (POCP) in kg C <sub>2</sub> H <sub>4</sub> equiv. | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03             | -8.81E-04                  | -  | -         | 5.51E-07 | 2.23E-04 | -  |  |
| Abiotic depletion potential (elements) (ADP <sub>el.</sub> ) in kg Sb equiv.             | Sical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.72E-05         | 2.61E-08                   | -  | -         | 5.69E-10 | 1.37E-06 | -  |  |
| Abiotic depletion potential (fossil) (ADP <sub>fos</sub> ) in MJ                         | - Common of the  | 1050.00          | 7.86                       | -  | -         | 0.02     | 8.05     | -  |  |
| Water consumption in m <sup>3</sup>                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.90            | 0.03                       | -  | -         | 5.70E-03 | 0.35     | -  |  |

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

| Mit Simming                                     | Patriol                     | Cestro |  |  |
|-------------------------------------------------|-----------------------------|--------|--|--|
| Prof. Ulrich Sieberath<br>Director of Institute | Patrick Wortner<br>Verifier |        |  |  |



### Short version (Part 2 of 3)

| Declaration code                | EPD-SRR-GB-5.0                                                                                                                                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Designation of declared product | Industrial sectional doors, sectional garage doors, roller shutters and roller grilles made of hot dip galvanized, double-skinned steel sections or aluminium with optional PU insulation panels for a high level of thermal insulation including optional glazing. |
| Scope                           | Teckentrup industrial sectional doors, sectional garage doors, roller shutters and roller grilles for external (and internal) use as a shutter for building openings and vehicle entrances in industrial, commercial and residential applications.                  |

| Use stage |    |    |    | Recycling potential |           |          |           |
|-----------|----|----|----|---------------------|-----------|----------|-----------|
| B5        | В6 | В7 | C1 | C2                  | C3        | C4       | D         |
| -         | -  | -  | -  | 0.94                | 1.352E+01 | 0.88     | -424.50   |
| -         | -  | -  | -  | 0.04                | 2.298E+00 | 0.04     | -8.01     |
| -         | -  | -  | -  | 0.07                | 9.604E-01 | 0.07     | -20.53    |
| -         | -  | -  | -  | 3.65E-12            | 4.732E-09 | 1.95E-10 | -1.46E-08 |
| -         | -  | -  | -  | 2.95E-04            | 1.593E-03 | 1.84E-04 | -0.10     |
| -         | -  | -  | -  | 7.10E-05            | 1.528E-04 | 5.71E-04 | -8.64E-03 |
| -         | -  | -  | -  | 1.05E-04            | 1.174E-04 | 2.99E-05 | -0.02     |
| -         | -  | -  | -  | 3.11E-09            | 7.880E-08 | 1.03E-08 | 4.93E-07  |
| -         | -  | -  | -  | 0.94                | 9.630E+00 | 0.84     | -420.70   |
| -         | -  | -  | -  | 3.48E-03            | 2.329E+00 | 0.03     | -5.17     |

#### Basis

- EN ISO 14025:2006
- EN 15804:2012

Guidance on preparing Type III Environmental Product Declarations.

This Declaration is based on the PCR document "Pedestrian doorsets and industrial, commercial and garage doors and gates PCR-TT-1.0: 2011

#### Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue.

The declaration holder assumes full liability for the underlying data, certificates and verifications.

Date created: 01 January 2013

Next revision: 01 January 2018

#### LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both the data collected at the production sites of TECKENTRUP GmbH & Co. KG as well as generic data from the "GaBi 5" database. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc. ).



The LCA was prepared by Life Cycle Engineering Experts GmbH.

#### Notes on publication

"Conditions and Guidance on the Use of **ift** Test Documents" apply.



Short version (Part 3 of 3)

**Programme** 83026 Rosenheim operator Germany

ift Rosenheim GmbH Theodor-Gietl-Strasse 7-9

LCA analyst

Life Cycle Engineering **Experts GmbH** Berliner Allee 58 64295Darmstadt Germany



Holder of the declaration

Teckentrup GmbH & Co. KG Industriestraße 50 33415 Verl-Sürenheide Germany



| LCA results<br>per m² roller shutter/roller grille                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Product<br>stage | Construction process stage |    | Use stage |          |          |    |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|----|-----------|----------|----------|----|--|
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 – A3          | A4                         | A5 | B1        | B2       | В3       | B4 |  |
| Primary energy – non-renewable<br>(PEn renw) in MJ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800.00           | 6.88                       | -  | -         | 0.02     | 10.00    | -  |  |
| Primary energy – renewable (PE <sub>renw</sub> ) in MJ                                   | No se p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.70            | 0.27                       | -  | -         | 5.53E-04 | 0.33     | -  |  |
| Global warming potential (GWP 100) in kg CO₂ equiv.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.60            | 0.50                       | -  | -         | 2.24E-03 | 0.41     | -  |  |
| Ozone depletion potential (ODP) in kg R11 equiv.                                         | C S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.09E-07         | 2.67E-11                   | -  | -         | 4.00E-12 | 7.41E-09 | -  |  |
| Acidification potential (AP) in kg SO <sub>2</sub> equiv.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.17             | 2.16E-03                   | -  | -         | 2.76E-06 | 7.95E-04 | -  |  |
| Eutrophication potential (EP) in kg PO <sub>4</sub> <sup>3-</sup> equiv.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01             | 5.20E-04                   | -  |           | 1.04E-06 | 9.18E-05 | -  |  |
| Photochemical ozone creation potential (POCP) in kg C <sub>2</sub> H <sub>4</sub> equiv. | A CONTRACTOR OF THE CONTRACTOR | 0.03             | -7.68E-04                  | -  | -         | 5.51E-07 | 2.60E-04 | -  |  |
| Abiotic depletion potential (elements)                                                   | Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.62E-05         | 2.28E-08                   | -  | -         | 5.69E-10 | 1.50E-06 | -  |  |
| (ADP <sub>el.</sub> ) in kg Sb equiv.                                                    | Ca • 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                            |    |           |          |          |    |  |
| Abiotic depletion potential (fossil) (ADP <sub>fos</sub> ) in MJ                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 767.00           | 6.85                       | -  | -         | 1.63E-02 | 9.20     | -  |  |
| Water consumption in m <sup>3</sup>                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.40            | 0.03                       | -  | -         | 5.70E-03 | 0.39     | -  |  |

Values that cannot be shown or are inexistent or marginal, are expressed as [-].

Prof. Ulrich Sieberath Patrick Wortner Director of Institute Verifier



### Short version (Part 3 of 3)

| Declaration code                | EPD-SRR-GB-5.0                                                                                                                                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Designation of declared product | Industrial sectional doors, sectional garage doors, roller shutters and roller grilles made of hot dip galvanized, double-skinned steel sections or aluminium with optional PU insulation panels for a high level of thermal insulation including optional glazing. |
| Scope                           | Teckentrup industrial sectional doors, sectional garage doors, roller shutters and roller grilles for external (and internal) use as a shutter for building openings and vehicle entrances in industrial, commercial and residential applications.                  |

| Use stage |    |    |    | Recycling potential |          |          |           |
|-----------|----|----|----|---------------------|----------|----------|-----------|
| B5        | В6 | В7 | C1 | C2                  | C3       | C4       | D         |
| -         | -  | -  | -  | 0.82                | 11.78    | 0.39     | -333.10   |
| -         | -  | -  | -  | 0.03                | 2.00     | 0.02     | -0.50     |
| -         | -  | -  | -  | 0.06                | 0.84     | 0.04     | -24.01    |
| -         | -  | -  | -  | 3.18E-12            | 4.13E-09 | 8.30E-11 | 9.11E-10  |
| -         | -  | -  | -  | 2.57E-04            | 1.39E-03 | 9.18E-05 | -0.10     |
| -         | -  | -  | -  | 6.19E-05            | 1.33E-04 | 4.61E-04 | -8.00E-03 |
| -         | -  | -  | -  | 9.14E-05            | 1.02E-04 | 1.56E-05 | -0.01     |
| -         | -  | -  | -  | 2.71E-09            | 6.87E-08 | 4.35E-09 | -4.71E-07 |
| -         | -  | -  | -  | 0.82                | 8.39     | 0.37     | -342.00   |
| -         | -  | -  | -  | 3.03E-03            | 2.03     | 0.01     | 2.46      |

#### Basis

- EN ISO 14025:2006
- EN 15804:2012

Guidance on preparing Type III Environmental Product Declarations.

This Declaration is based on the PCR document "Pedestrian doorsets and industrial, commercial and garage doors and gates PCR-TT-1.0: 2011

#### Validity

This verified Environmental Product Declaration applies solely to the specified products and is valid for a period of 5 years from the date of issue.

The declaration holder assumes full liability for the underlying data, certificates and verifications.

Date created: 01 January 2013

Next revision: 01 January 2018

#### LCA basis

The LCA was prepared in accordance with EN ISO 14040 and EN ISO 14044. The base data include both the data collected at the production sites of TECKENTRUP GmbH & Co. KG as well as generic data from the "GaBi 5" database. LCA calculations were based on the "cradle to grave" life cycle including all upstream processes (e.g. raw material extraction, etc. ).



The LCA was prepared by Life Cycle Engineering Experts GmbH.

#### Notes on publication

"Conditions and Guidance on the Use of **ift** Test Documents" apply.

Anerkannte Stelle



ift Rosenheim GmbH Theodor Gietl Straße 7-9 D-83026 Rosenheim Phone: +49 (0) 80 31/261-0

Fax: +49 (0) 80 31/261-290 Email: info@ift-rosenheim.de www.ift-rosenheim.de