

HOME PRODUCTS TECHNICAL GUIDE

CONTENTS

PERFORMANCE PAGE 2

WARRANTIES PAGE 2

SECTION 1: PAGES 3 – 11

CARTECK SECTIONAL GARAGE DOORS

CARTECK SLX VISION SECTIONAL GARAGE DOORS CARTECK GSA VISION SECTIONAL GARAGE DOORS CARTECK SUPERSIZE SECTIONAL GARAGE DOORS

SECTION 2: PAGES 12 – 14 Carteck side Hinged Garage Doors

SECTION 3: PAGES 15 – 17
CARTECK SIDE HINGED GARAGE DOORS

WHAT PERFORMANCE CAN I EXPECT?

As Part of the CE marking process, each product must have its performance provided for a defined set of characteristics. Other characteristics can also be included if relevant to a door's performance, such as security. The following table shows the performance characteristics of each product in our range.

NPD signifies the product has not been measured for this characteristic (NPD - No Performance Determined)

PERFORMANCE CHARACTERISTIC	CarTeck Sectional Garage Doors	CarTeck Super Size Sectional Garage Doors	CarTeck Sectional GSA Vision Garage Doors	CarTeck Sectional SLX Vision Garage Doors	CarTeck Side Hinged Garage Doors	Teckentrup 62 Swing Secure Garage Doors
Resistance to Windload EN 12424	Class 2	Class 2	Class 2	Class 2	Class 2	Class 2
Watertightness EN 12425	Class 2	Class 2	Class 2	Class 2	NPD	Class 2
Air Permeability EN 12426	Class 2	Class 2	Class 2	Class 2	NPD	Class 2
Thermal Transmittance EN 13241	1.38 W/m²k	1.38 W/m²k	3.3 W/m ² k	3.5 W/m ² k	NPD	1.4 W/m²k
Operating Forces (hand Operated) EN 12604	150 N	150 N	150 N	150 N	NPD	150 N
Operating Cycles EN 1191	NPD	NPD	NPD	NPD	NPD	C5
Burglar Resistance LPS 1175 Issue 8	NPD	NPD	NPD	NPD	NPD	A1 (SR1)

WARRANTY

The warranty periods below only apply to products that have been correctly installed as per the instructions and have been used, maintained by a Garage Door Specialist and cleaned in accordance with the requirements set out in the operating and maintenance sections of instructions and labels.

CARTECK, SUPER SIZE, GSA VISION & SLX VISION SECTIONAL GARAGE DOORS

2-year manufacturer's guarantee

on polymer and aluminium window units

5*-year manufacturer's quarantee

 on SLX & GSA Vision windows, rollers, hinges, cable pulleys, cables and standard springs (opening/closing max. 5 times a day)

10-year manufacturer's guarantee

- on panels against rust penetration from inside to outside
- against door panel separation of steel from foam
- on material and manufacturing flaws of all non-moving parts of the frame that are verifiably unusable or whose usability is substantially compromised
- on floor seal, intermediate seals, side seals and lintel seal against rotting

The guarantee does not apply to doors that are subjected to extreme conditions, e.g. corrosive influences resulting from use in a coastal climate with high salt content.

*2 -year for Super Size

CARTECK SIDE HINGED GARAGE DOORS

2-year manufacturer's guarantee

 on window units, hinges, locks, handles and stays (opening/closing max. 5 times a day)

10-year manufacturer's guarantee

- on panels against rust penetration from inside to outside
- against door panel separation of steel from foam
- on material and manufacturing flaws of all non-moving parts of the frame that are verifiably unusable or whose usability is substantially compromised
- on floor seal, intermediate seals and frame seals against rotting

The guarantee does not apply to doors that are subjected to extreme conditions, e.g. corrosive influences resulting from use in a coastal climate with high salt content.

TECKENTRUP 62 SWING SECURE GARAGE DOORS

2-year manufacturer's guarantee

 on mechanical defects, material and manufacturing flaws of all non-moving parts of the frame that are verifiably unusable or whose usability is substantially compromised

10-year manufacturer's guarantee

- on panels against rust penetration from inside to outside
- on floor seal and frame seals against rotting

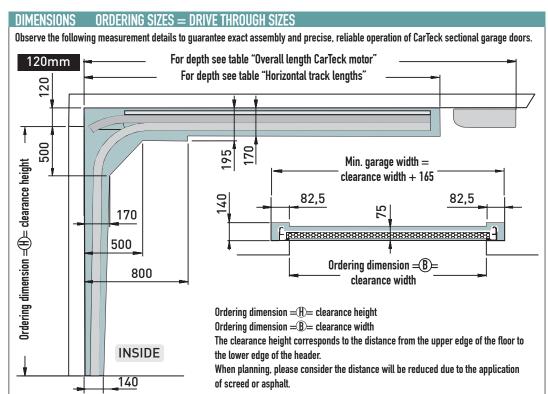
The guarantee does not apply to doors that are subjected to extreme conditions, e.g. corrosive influences resulting from use in a coastal climate with high salt content.

CARTECK DRIVE & MOTOR

*5-year manufacturer's guarantee

 on mechanical defects, material and manufacturing flaws. (opening/closing max. 5 times a day)**

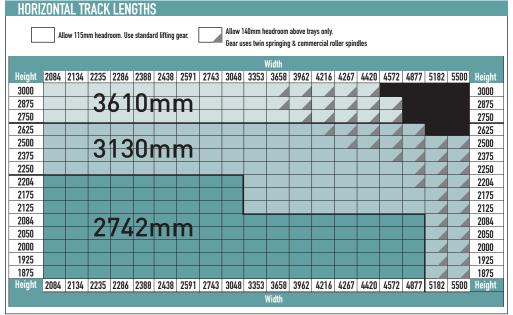
*2 -year for Super Size


** Consumable Items are not included within warranty terms and conditions: hand transmitters. light bulbs, fuses & batteries

SECTION 1:

CARTECK SECTIONAL GARAGE DOORS
CARTECK SLX VISION SECTIONAL GARAGE DOORS
CARTECK GSA VISION SECTIONAL GARAGE DOORS
CARTECK SUPERSIZE SECTIONAL GARAGE DOORS

TECHNICAL CARTECK SECTIONAL GARAGE DOORS GSW 40-L & GSA/SLX VISION



RECOMMENDED HORIZONTAL TRACK FIXING POINTS If the rear spacer bar extending side fixings are securely fixed, the second fixing point, shown within is not required. 2742 mm 383.5 horizontal-frame Insertion depth: = recommendation fixing points spring duct length: 1050 700 2344 mm 3130 mm 383,5 horizontal-frame Insertion depth: 3130 mm spring duct length: 1000 1200 2732 mm 3610 mm horizontal-frame 383,5 Insertion depth: 3610 mm spring duct length: 1765 3212 mm

ORDERING NOTES:

Door heights achieved by mixing panel heights (except ribbed), use of 0, 9, 17, or 32mm bottom profiles or top & bottom panel cut downs. When ordering use metric sizes, imperial conversions are nominal.

084 2	2134	2235	2286																
084 2	2134	2235	2284			Width													
			2200	2388	2438	2591	2743	3048	3353	3658	3962	4216	4267	4420	4572	4877	5182	5500	Heigl
																			300
																			287
		R	eau	res	fran	ne le	a ho	les	stan	dard	fra	me)	and						275
																			262
					LWIS	LIIX	Irali	ie le	y ur	acke	เร.								250
																			237
	vict	fiv f	rame	lon	hra	deate													225
	AI2f			_		reis			Twi	st fix	frai	ne le	eg bi	rack	ets r	egui	red.		220
		_no	t req	uire	d								9						217
									- No	n hol	es ir	ı fra	me l	en a	s an	onti	on		212
_N	o ho	les i	n fra	me	lea a	s an								_		- 1			208
									(1	<u>setw</u>	een	tix t	rame	e Wit	<u>n sti</u>	<u>tten</u>	er		205
ohr	IUII	(ner/	weer	ПX	IIalli	e wi	ur				hra	cko	e ro	nuir	od)				200
sti	iffer	er b	rack	ets	reau	ired)					nic	CNC	IS 16	quii	cu).				192
																			187
084 2	2134	2235	2286	2388	2438	2591	2743	3048			3962	4216	4267	4420	4572	4877	5182	5500	Heig
										Width									
	N opt	No ho option stiffer	Twist fix for no No holes to option (between the stiffener holes)	Twist fix frame not req No holes in fra option (between stiffener brack	Twist fix frame leg not require No holes in frame option (between fix stiffener brackets	Twist fix frame leg brace not required. No holes in frame leg a option (between fix frame stiffener brackets required)	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame wi stiffener brackets required)	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required).	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required).	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required). No holes in 2235 2286 2388 2438 2591 2743 3048 3353	Twist fix frame leg brackets Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required).	Twist fix frame leg brackets Twist fix frame leg brackets Twist fix frame leg brackets No holes in frame leg as an option (between fix frame with stiffener brackets required). Twist fix frame leg brackets No holes in the brackets required brackets BY 2134 2235 2286 2388 2438 2591 2743 3048 3353 3658 3962	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required). No holes in frame leg as an option (between fix frame with stiffener brackets required).	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required). No holes in frame leg as an option (between fix frame with stiffener brackets required).	Twist fix frame leg brackets Twist fix frame leg brack not required. No holes in frame leg as an option (between fix frame with stiffener brackets required). No holes in frame leg as an (between fix frame with brackets required) 1084 2134 2235 2286 2388 2438 2591 2743 3048 3353 3658 3962 4216 4267 4420	Twist fix frame leg brackets not required. No holes in frame leg as an option (between fix frame with stiffener brackets required). No holes in frame leg as an option (between fix frame with stiffener brackets required). No holes in frame leg as an option (between fix frame with stiffener brackets required).	Twist fix frame leg brackets Twist fix frame leg brackets Twist fix frame leg brackets required. No holes in frame leg as an opti option (between fix frame with stiffener brackets required). No holes in frame leg as an opti (between fix frame with stiffen brackets required).	Twist fix frame leg brackets Twist fix frame leg brackets Twist fix frame leg brackets required. No holes in frame leg as an option Option (between fix frame with stiffener brackets required). No holes in frame leg as an option (between fix frame with stiffener brackets required). Stiffener brackets required).	Twist fix frame leg brackets not required. No holes in frame leg as an option option (between fix frame with stiffener brackets required). No holes in frame leg as an option (between fix frame with brackets required). Stiffener brackets required). 1

SPECIFICATION

GSW 40-L Sectional door

DOOR.

Sectional door double skinned PUR foam core, 40mm thick CarTeck panels. Outer surface finished in choice of 4 standard designs and all standard listed CarTeck colours. Inner surface stucco design, colour similar to RAL 9002. Sections have a centre seal; EPDM, header, and floor seals. Different order heights are made up from mixing panel sizes, 4 different bottom profile sizes and reduced top panel heights.

FRAME-

Door frame is made from galvanized sheet steel, coil coated with polyester, prime coated similar to RAL 9016 or other Trend colour. Protective strips with EPDM sealing lips on both sides of the vertical tracks.

HARNWARF.

Galvanised finish, screwed hinges to all sections, adjustable rollers with ball bearings. Multiple tension springs and double cable system housed in low friction housing above horizontal tracks.

AUTOMATION:

Door prepared for automation as standard with manual locking available as optional extra.

COLOURS

RAL references for colours are provided as a guide only to the nearest similar RAL colour. Colours will not match to other RAL finishes due to different coating processes, gloss levels, substrates and textures. Similarly, special RAL, BS or other colours will not be a precise match.

The door panel, frames and window frame colour shade, and surface lustre will show some slight variation, this is due to different base materials and coating methods.

GSA / SLX Vision Sectional door

DOOR

Sectional door panels made from hollow aluminium profiles, 40mm depth filled with 16mm scratch resistant, polymer double glazing. Sections have a centre seal: EPDM, header, and floor seals. Door heights are achieved by equal division of panel heights ranging from 300mm to 750mm.

SLX Vision: Max door height 3000mm. Max door width 4000mm.

GSA Vision max door size as CarTeck Sectional.

FRAMF-

Door frame is made from galvanized sheet steel, coil coated with polyester, prime coated similar to RAL 9016 or other Trend colour. Protective strips with EPDM sealing lips on both sides of the vertical tracks.

HARDWARE:

Hardware, galvanised finish, screwed hinges to all sections, adjustable rollers with ball bearings. Multiple tension springs and double cable system housed in low friction housing above horizontal tracks.

AUTOMATION:

Door prepared for automation as standard.

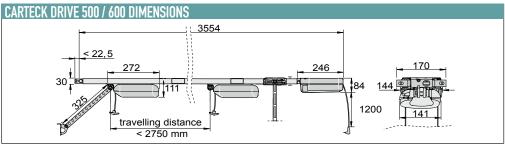
COLOURS

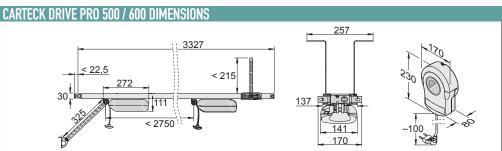
RAL references for colours are provided as a guide only to the nearest similar RAL colour. Colours will not match to other RAL finishes due to different coating processes, gloss levels, substrates and textures. Similarly, special RAL, BS or other colours will not be a precise match.

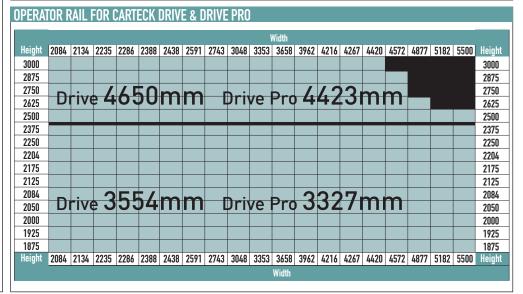
The door panel, frames and window frame colour shade, and surface lustre will show some slight variation, this is due to different base materials and coating methods.

OPERATOR RAIL FOR CARTECK 260/70/80 & 360/370/380

Turning motor head through 90 degrees reduces overall length: 200 series -133mm 300 series -18mm


NO HOLES FRAME FIXING


IMPORTANT!


When fixing a no-holes frame between the reveal you must secure the frame to the lintel as shown using the 'L' bracket supplied. This is pre-fitted to all no-holes frame legs.

If a good fixing cannot be achieved, alternative fixing methods must be used to secure the frame.

3D PROFILE KITS

The kits:

85mm frame leg kit 2no. 85mm x 12mm x 3000mm

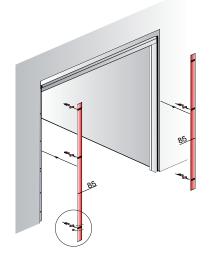
85/120mm 3D profile kit 2no. 85mm x 12mm x 3000mm

1no. 120mm x 12mm x 3000mm

120mm 3D profile kit 3no. 120mm x 12mm x 3000mm

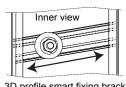
*85mm frame leg kit 2no. 85mm x 12mm x 3000mm & additional door header (The additional door header will be supplied

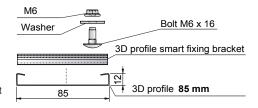
to the door ordering size +200mm)


70mm angle 3D kit 3no. 70mm x 12mm x 3000mm

* For doors over 3 metres wide – additional door header eliminates the join that would occur using a 120mm 3D profile (max length 3 metres)

IMPORTANT!

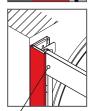

3D frame legs include two lintel fixing brackets that must be used to secure the top of the frame leg, preventing lateral movement.



The 3D profiles have a smart fixing that allows for lateral movement – perfect for bridging small fitting gaps or tidying up the front face of the opening.

Shown here on the 85mm 3D profile.

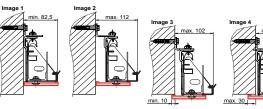
3D profile smart fixing bracket 85 mm



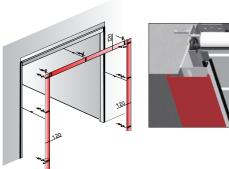
85mm frame leg 3D profile kit

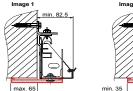
85mm frame leg 3D cover profiles for between the reveal fit with lateral movement for up to 30mm gap coverage or up to 30mm overlap.

85mm

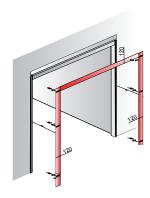


Note: The frame leg 3D kit profiles are 12mm deep and will create a step at the header. Use an 85/120 3D profile kit for a flush finish


Also available in a kit with a 120mm header 3D cover profile.

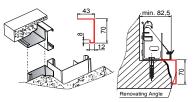


120mm 3D profile kit

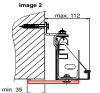

120mm 3D cover profiles for between the reveal fit at the front edge with lateral movement for up to 65mm overlap.

85mm frame leg kit & additional door header

Perfect for doors over 3000mm wide – our 120mm SD profile comes in 3000mm lengths requiring a butted joint on larger doors – this kit includes a second full–width single piece header for a seamless finish.



70mm angle 3D renovating profile


Use this when fitting behind the reveal or part between to neaten up damaged openings. The 70mm angle 3D renovating profile is held between the frame and the brickwork and will cover the back corner of the opening to tidy up any damaged wall edges. Ideal when removing timber frame and brick work deteriorated.

Supplied in 3000mm lengths for on-site cutting to the required length.

N.B.! 3D profile kits must be used in conjunction with colour matched frames.

POLYMER WINDOWS

CARTECK SECTIONAL GARAGE DOORS GSW 40-L

WINDOWS - POLYMER DOUBLE GLAZING

Windows construction: Polymer casement with polymer (Styrene Acrylonitrile) double glazed unit.

Georgian

Cross Mullion

Polymer Windows

Selected Trend colours & wood design windows are finished in a complementary flat colour for Golden Oak (RAL8003), Rosewood (RAL8016), Night Oak (RAL8014), Textured Anthracite (RAL7016) and Ice Crystal Grey Aluminium (RAL9007).

The surrounds on aluminium GSA window sections are finished in a smooth finish.

Window frame colour shade and surface lustre will show a variance from the panel finish as the base material and coating methods are different.

Polymer glazing in Georgian doors and Type 2 rectangle is 16mm thick. All other polymer glazing is 20mm thick.

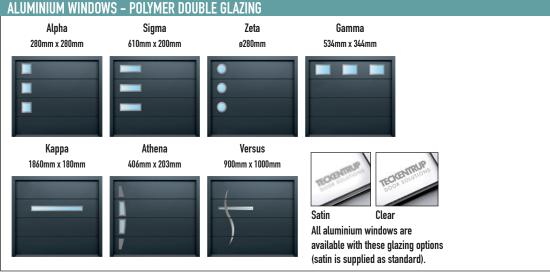
Standard Rib. Centre Rib & Solid

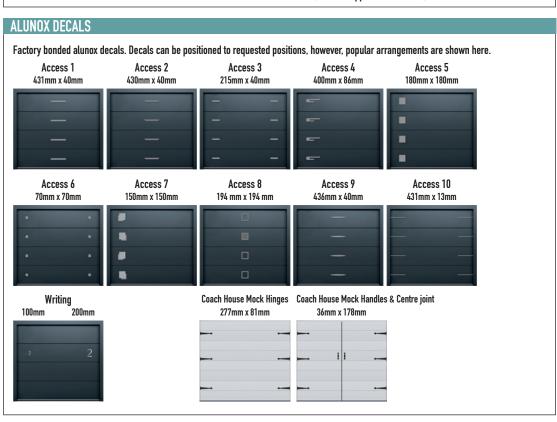
						*	
Rectangle 1 Plain	Rectangle 1 Cross Mullion	Rectangle 1 Rhombus	Rectangle 2	Rectangle 3	Vertical Square 1	Vertical Square 2	GSA Aluminium

	Style	Overall Size	Colour / Finish
	Rectangle 1	610 X 270	White
\Diamond			Trend/Ral/Wood design
	Rectangle 2	680 X 210	White
			Trend/Ral/Wood design
	Rectangle 3	980 X 140	White
			Trend/Ral/Wood design
	Square 1 & 2	270 x 270	White
			Trend/Ral/Wood design
	GSA Aluminium	per linear m	White/Trend
	Window Section	-	Ral/Wood design

All polymer windows are available with these glazing options:

Clear


Frosted


EXTRA OPTIONS CARTECK SECTIONAL GARAGE DOORS GSW 40-L

ALUMINIUM WINDOWS & DECALS

CARTECK SECTIONAL GARAGE DOORS GSW 40-L

SLX VISION OPTIONS & CONFIGURATION

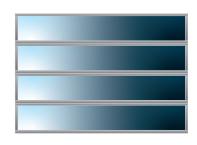
VISION OPTIONS

Sectional door panels made from hollow aluminium profiles, 40mm profile depth with 20mm scratch resistant, polymer double glazing.

70% transmission

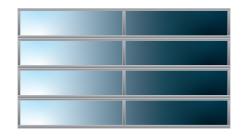
(approx)

Green Tint


Brown Tint 50% transmission (approx)

Grey Tint 43% transmission (approx)

WHAT WILL MY DOOR LOOK LIKE?


Full width glazing up to 3250mm wide (no mullions)

Single mullion over 3250mm wide, maximum width 4000mm.

The number of sections is dependent on door height and is shown below:

to 2280mm high.

to 2835mm high.

4 sections Doors up 5 sections Doors up 6 sections Doors up to 3000mm high.

GSA VISION OPTIONS & CONFIGURATION

GSA Vision Options

Sectional door panels made from hollow aluminium profiles, 40mm profile depth with 20mm scratch resistant, polymer double glazing.



WHAT WILL MY DOOR LOOK LIKE?

The number of sections is dependent on door height and is shown below:

to 2280mm high.

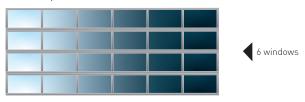
to 2835mm high.

4 sections Doors up 5 sections Doors up 6 sections Doors up to 3000mm high.

The number of vertical mullions is dependent on door width and is shown below:

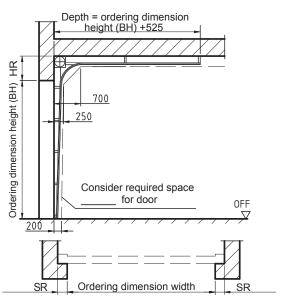
Doors up to 2235mm wide

Doors up to 2438mm wide


Doors up to 3353mm wide

Doors up to 4420mm wide

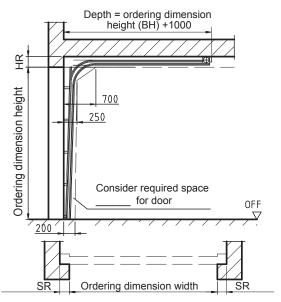
Doors up to 5500mm wide



TECHNICAL CARTECK SUPER SIZE SECTIONAL GARAGE DOORS GSW 40-L

DIMENSIONS AND CLEARANCES

- Normal fitting


SR= side room with rail motor = 110

SR= side room non-drive side with direct drive motor = 110

SR= side room drive side with direct drive motor = 210

- Low headroom fitting

SR= side room with rail motor = 120

SR= side room non-drive side with direct drive motor = 120 SR= side room drive side with direct drive motor = 210

HR HEADROOM REQUIREMENT

Heights		Widths	6000	6500	7000	7500	8000
4 2250 7'4"	Rail Operator	Stand Headroom Low Headroom	400 280	450 280	-	-	-
Sections 2230 / 4	Direct Drive	Stand Headroom Low Headroom	400 250	450 250	450 250	450 250	450 250
5 2750 9'0"	Direct Drive	Stand Headroom Low Headroom	400 250	450 250	450 250	450 250	450 250
6 3000 9'9"	Direct Drive	Stand Headroom Low Headroom	400 250	450 250	450 250	450 250	450 250

Max Width For Low Headroom = 7750

280mm low headroom with rail operator is to prevent the top panel seal rubbing on the rail If this is not an issue then the door will fit in 250mm

SPECIFICATION

DOOR:

Sectional door double skinned PUR foam core, 40mm thick CarTeck panels. Outer surface finished in choice of 4 standard designs and all standard listed CarTeck colours. Inner surface stucco design, colour similar to RAL 9002. Sections have a centre seal: EPDM, header, and floor seals. Different order heights are made up from mixing panel sizes, 2 different bottom profile sizes and reduced top panel heights. Doors have reinforcing steel profiles on the rear of the panels.

FRAME

Door frame is made from hot dipped galvanised steel sections. Protective strips with EPDM sealing lips on both sides of the vertical tracks.

HARDWARE

Doors have galvanised frame legs and are supplied without a header strip. Hardware has galvanised finish, screwed hinges to all sections, adjustable rollers with ball bearings. Front or optional rear mounted torsion spring with load-bearing steel cables.

AUTOMATION:

Electric 230V drive as standard, either direct or rail drive. Optical safety edge, hard wired to control system. Direct drive motor must have 16 amp supply direct to consumer unit. External release is not possible with direct drive motor, additional access must be available into garage.

COLOURS

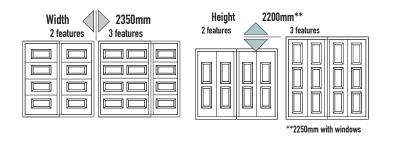
RAL references for colours are provided as a guide only to the nearest similar RAL colour. Colours will not match to other RAL finishes due to different coating processes, gloss levels, substrates and textures. Similarly, special RAL, BS or other colours will not be a precise match.

The door panel, frames and window frame colour shade, and surface lustre will show some slight variation, this is due to different base materials and coating methods.

POLYMER WINDOW OPTIONS

	PER SIZE SECTIONAL GA		
WINDOWS -	- POLYMER DOUBLE G	LAZING	
	ruction: Polymer casement wit		onitrile) double glazed unit.
	Style	Overall Size	Colour / Finish
	Rectangle 1	610 X 270	White Trend/Ral/Wood design
	Rectangle 2	680 X 210	White Trend/Ral/Wood design
	Rectangle 3	980 X 140	White
	Square 1 & 2	270 x 270	Trend/Ral/Wood design White
			Trend/Ral/Wood design White/Trend
	GSA Aluminium Window Section	per linear m	White/Trend Ral/Wood design
		Polymer Wind	
The surrounds o smooth finish.	colours & wood design windows flat colour for Golden Oak (RAL8 t Oak (RAL8014), Textured Anthra Aluminium (RAL9007). on aluminium GSA window sectio	003), Rosewood from difficite (RAL7016) and Polyns are finished in a	dow frame colour shade and surface lustre will show a variance n the panel finish as the base material and coating methods are erent. Imper glazing in Type 2 rectangle is 16mm thick. All other Imper glazing is 20mm thick.
All polymer v these glazin	windows are available with g options:	Clear	Frosted Satin
1			

SECTION 2:


CARTECK SIDE HINGED GARAGE DOORS

TECHNICAL CARTECK SIDE HINGED GARAGE DOORS GSW 40-L

GEORGIAN DOORS

Horizontal doors have 2 columns of features as standard arranged 1/2 - 1/2, changing to an asymmetric three columns at the width shown below. 1/2 - 1/2 vertical doors have 2 rows of features as standard changing to three at the height shown right.

SPECIFICATION

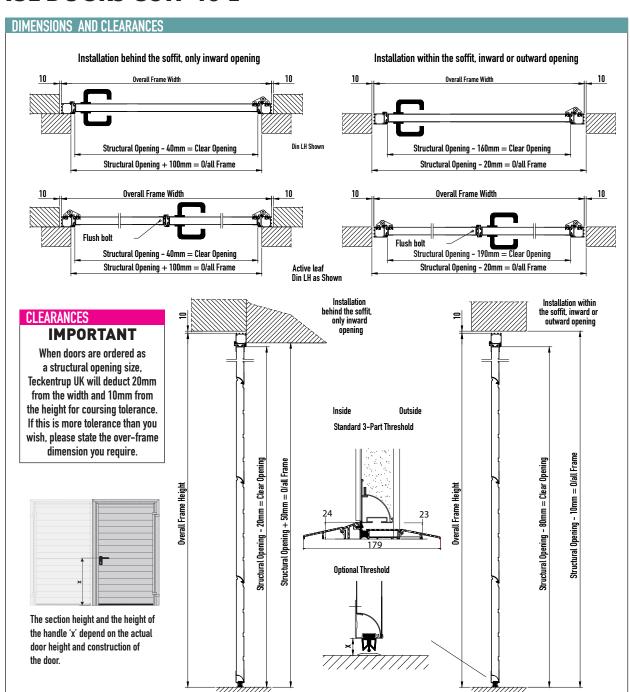
DOOR:

Door leaves are fabricated using 40mm thick CarTeck panels with an extruded aluminium perimeter frame and integral seals. Doors with the optional standard threshold profile have an EPDM black threshold seal at the base. Each leaf is fitted with two or three (dependent on size) surface fixed hinges.

The door frame is a an extruded aluminium profile with mitred corners and integral seals, for details refer to technical leaflet. A 3-part stepped aluminium threshold is also included. 10mm tolerance should be allowed to facilitate frame squaring during installation.

HARDWARE:

Hardware comprises of a DIN standard CE marked European sashlock and a pair of stainless steel round bar lever handles on 50mm diameter roses. A Euro-profile cylinder and thumb turn with stainless steel escutcheons is included as standard (double cylinder, key both sides is available as an option if required). Two security keys are supplied with each cylinder. The inactive leaf is fitted with top and bottom recessed lever action flush bolts. A stay is fitted to each leaf to hold the door in the open position, any leaf below 780mm wide (including asymmetric side hinged doors) will not have a stay.


Stainless steel** needs regular cleaning or will stain, especially in areas of high salt content.

COLOUR:

The door frame and window frame colour shade and surface lustre will show a variance from the panel finish as the base material and coating methods are different. Where differing materials and process are adopted, such as side hinged GSW 40L garage doors, their maybe some colour matching variations. Differing light conditions may further reduce or highlight this effect. The colours RAL9006 and 9007 pose particular problems when colour matching, more information is available via the sales office.

RAL references for colours are provided as a guide only to the nearest similar RAL colour. Colours will not match to other RAL finishes due to different coating processes, gloss levels, substrates and textures. Similarly, special RAL, BS or other colours will not be a precise match.

**For how to care for stainless steel see: www.teckentrup.co.uk/garage-doors/frequently-asked-questions-faqs

POLYMER WINDOWS

CARTECK SIDE HINGED GARAGE DOORS GSW 40-L

WINDOWS - POLYMER DOUBLE GLAZING

Windows construction: Polymer casement with polymer (Styrene Acrylonitrile) double glazed unit.

Georgian

1 Rectangle Plain ` Cross Mullion

Polymer Windows

Selected Trend colours & wood design windows are finished in a complementary flat colour for Golden Oak (RAL8003), Rosewood (RAL8016), Night Oak (RAL8014). Textured Anthracite (RAL7016) and Ice Crystal Grey Aluminium (RAL9007).

The surrounds on aluminium GSA window sections are finished in a smooth finish.

Window frame colour shade and surface lustre will show a variance from the panel finish as the base material and coating methods are different.

Standard Rib, Centre Rib & Solid

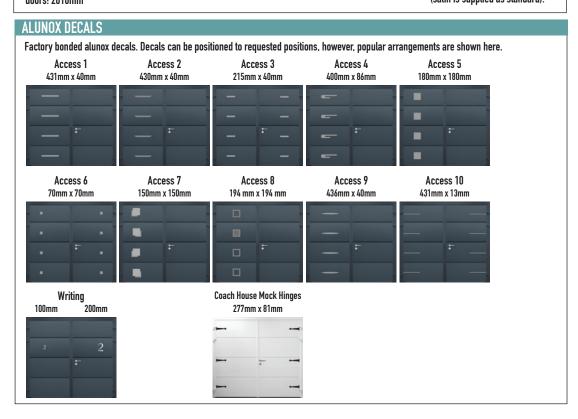
Cross Mullion

Rhombus

Rectangle 2 Rectangle 3 Vertical Square 1 Vertical Square 2 GSA Aluminium

	Style	Overall Size	Colour / Finish
	Rectangle 1	610 X 270	White
\Leftrightarrow			Trend/Ral/Wood design
	Rectangle 2	680 X 210	White
			Trend/Ral/Wood design
	Rectangle 3	980 X 140	White
	-		Trend/Ral/Wood design
	Square 1 & 2	270 x 270	White
			Trend/Ral/Wood design
	GSA Aluminium	per linear m	White/Trend
	Window Section		Ral/Wood design

All polymer windows are available with these glazing options:

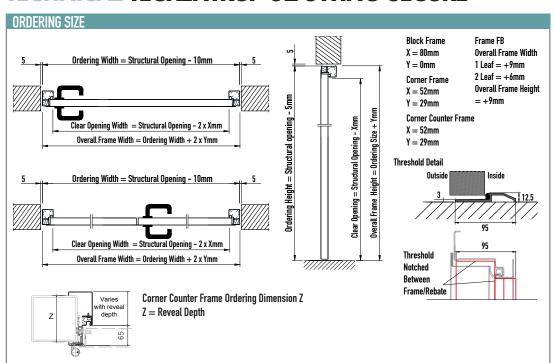

EXTRA OPTIONS

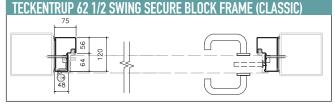
EXTRA TOUCHES SPY HOLE PET FLAP **CODE LOCK LETTER box** *Customer supplied

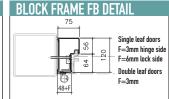
ALUMINIUM WINDOWS & DECALS

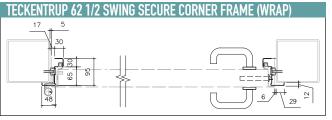
CARTECK SIDE HINGED GARAGE DOORS GSW 40-L

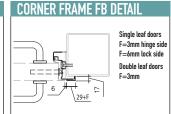
ALUMINIUM WINDOWS - POLYMER DOUBLE GLAZING Windows construction: Aluminium and polymer casement with polymer double glazed unit. Sigma Zeta Gamma ø280mm 534mm x 344mm 280mm x 280mm 610mm x 200mm Kappa Athena Versus 406mm x 203mm 1860mm x 180mm 900mm x 1000mm Satin Clear Minimum over frame height All aluminium windows are for Kappa windows used available with these glazing options vertically on side hinged (satin is supplied as standard). doors: 2010mm

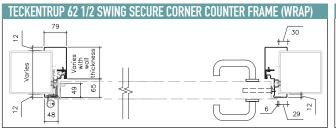



SECTION 3:


TECKENTRUP 62 SWING SECURE GARAGE DOORS




TECHNICAL TECKENTRUP 62 SWING SECURE



SPECIFICATION

DOOR:

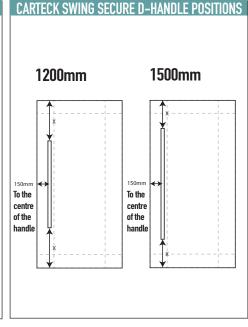
Double skinned, thin rebated on 3 sides 1mm galvanised steel door leaf 62mm thick filled with insulating mineral wool, polyester powder coated with 1 security bolt per leaf.

FRAME:

Door frame is made from 2mm thick galvanised steel, wrap frame filled with foam on site, classic block frame factory filled with mineral wool. 3 sided EPDM seal push fitted into frame on installation. Aluminium rehated threshold

HARDWARE:

2 bearing KO hinges per door leaf, DIN standard mortice lock with stainless steel lever handles and protective cylinder guard. Euro profile security cylinder and thumb turn with 2no. restricted keys. Foot operated door stays and top and bottom lever action flush botts on double doors. Rain-Guard in anodised aluminium (Not colour Matched). To ensure the security of product when glazing elements added to the door the door will be supplied with a key-key cylinder.


AUTOMATION-

Door is not suited for automation.

COLOUR-

RAL references for colours are provided as a guide only to the nearest similar RAL colour. Colours will not match to other RAL finishes due to different coating processes, gloss levels, substrates and textures. Similarly, special RAL, BS or other colours will not be a precise match.

WINDOWS - CARTECK SWING SECURE STANDARD WINDOW POSITIONS 1 window 2 windows 3 windows 300 300 300 300 300 300 300 300 300 300 300 230 1350 300 300 1360

LAMINATED WINDOWS & DECALS

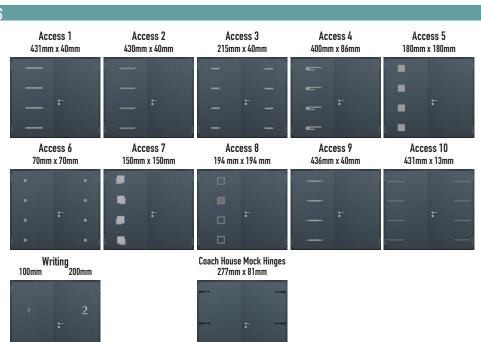
TECKENTRUP 62 SWING SECURE

WINDOWS

Windows construction: Anodised Aluminium surrounds with laminated glass in clear or satin.

Square 300 S3

Size


230mm x 1360mm 300mm x 300mm 300mm Round

Doors with windows are supplied with a lock cylinder that can only be operated by key from outside and inside to maintain security. Should a glazing element be breached in an attempt to enter, the door cannot be opened (an internal thumb turn is not available).

Square 300 S Square 300 SP Square 300 S2 Square 300 S2P

ALUNOX DECALS

Factory bonded alunox decals. Decals can be positioned to requested positions, however, popular arrangements are shown here.

Square 300 S3P

Teckentrup is a family business with operations throughout the world. In the UK Teckentrup is based in Warrington, Cheshire. Teckentrup products are available through a national network of independent Garage Door Specialist installers.

Teckentrup offers more than garage doors: We provide solutions and have set three quality standards for our garage doors:

Teckentrup UK Limited, Units 2-4 Opus 9 Industrial Estate, Woburn Road, Winwick Quay Warrington WA2 8UE

www.teckentrup.co.uk t: 01925 924 050 f: 08701 314 843 e: sales@teckentrup.co.uk

Design

We combine ease of use with aesthetics

Good design uses innovative technology to make using a product intuitive and effortless. Teckentrup garage doors offer a wide range of design options that will transform the look of your home and the way you use your garage space.

Safety & Security

We combine security with safety.

Our products are designed to provide peace of mind with both physical security and the knowledge that durability and safe operation are inherent.

Service

We combine speed with reliability.

The Teckentrup team and our network of Garage Door Specialist installers love to make your new door a pleasure to own. From planning to installation. You'll always receive expert advice and the best service for installation, maintenance and aftercare.

Quality & Environment

Teckentrup operates to quality procedures audited to ISO 9001.

We care about the environment too - this is why our products are certified in accordance with the Environmental Product Declaration (EPD).

ISO 14001 Environmental Management ISO 50001 Energy Management

DGNB

BNB

Energy and

I FFD

BRFFAM

